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A numerical study is made of the temporal eigenvalue spectrum of the Orr- 
Sommerfeld equation for the Blasius boundary layer. Unlike channel flows, there 
is no mathematical proof that this flow has an infinite spectrum of discrete eigen- 
values. The Orr-Sommerfeld equation is integrated numerically, and the 
eigenvalues located by tracing out the contour lines in the complex wave velocity 
(c = c, + ici) plane on which the real and imaginary parts of the secular determi- 
nant are zero. This method gives only a finite and small number of discrete eigen- 
values for a wide range of Reynolds numbers and wavenumbers. The spectrum of 
plane Poiseuille flow is used as a guide to study the spectrum of an artificial two- 
wall flow which consists of two Blasius boundary layers. As the upper boundary 
of this flow moves to infinity, it is found that the portion of the spectrum with an 
infinite number of eigenvalues moves towards c, = 1 and the spacing between 
eigenvalues goes to zero. It is concluded, on the basis of this result and the contour 
method, that the original few eigenvalues found are the only discrete eigenvalues 
that exist for Blasius flow over a wide portion of the c plane for c, < 1 and c, > 1. 
It is suggested that the discrete spectrum is supplemented by a continuous 
spectrum which lies along the c, = 1 axis for ct < -a/R. 

1. Introduction 
Numerous investigations have been carried out on the temporal eigenvalue 

spectrum of the Orr-Sommerfeld equation for plane Couette flow (Gallagher & 
Mercer 1964), plane Poiseuille flow (Grosch & Salwen 1968; Orszag 1971) and 
axisymmetric Poiseuille flow (Davey & Drazin 1969; Salwen & Grosch 1972). In  
contrast, until the appearance of the note by Jordinson (1971), only the funda- 
mental, or Tollmien-Schlichting mode, had been studied for boundary-layer flow. 
Perhaps one reason for this lack of attention is that the boundary layer does not 
offer as well posed a mathematical problem as does Couette or Poiseuille flow. 
Not only is the boundary layer not an exact solution of the Navier-Stokes equa- 
tions, but a further approximation beyond linearization, that of locally parallel 
flow, is needed to arrive at the Orr-Sommerfeld equation. The additional compli- 
cation of not having a finite interval has so far precluded any general mathe- 
matical analysis, such as has been carried out by Schensted (1960) and DiPrima 
& Habetler (1969) for finite-interval Orr-Sommerfeld problems. Nevertheless, 
the stability of boundary-layer flows has been studied for over 50 years on the 
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basis of the Orr-Sommerfeld equation, and the results obtained have much 
experimental support. It has always been assumed that an infinite sequence of 
discrete eigenvalues exists (see Betchov & Criminale 1967, p. 120), and that any 
arbitrary disturbance can be represented by an infinite series of the eigenmodes. 
However, no concrete evidence of an infinite eigenvalue spectrum has yet been 
brought forward. 

It is the purpose of the present paper to examine the problem of the eigenvalue 
spectrum of the Blasius boundary layer by a numerical method different from 
that used by Jordinson (1971). This method is described in $2. The results pre- 
sented in $ 3  show a discrete spectrum which differs from Jordinson’s as to the 
number and location of the modes, but does agree to the extent that there are 
only a small number of them. Detailed results are given concerning the depend- 
ence of the location and number of the modes on the wavenumber a and Reynolds 
number R. Particular attention is paid to the limits R-t  0 and R+ co with a con- 
stant, and a+ 0 with R constant. 

In  an effort to understand why so few eigenvalues are obtained, some calcula- 
tions for symmetrical channel flows are presented in $4. Schensted (1960) and 
DiPrima & Habetler (1969) proved that in a finite interval there is an infinite 
discrete spectrum for any velocity profile. The fist few modes of the part of the 
spectrum of plane Poiseuille flow that contains am infinite number of eigenvalues 
(called the S family) are computed, and used as a guide in two artificial flow 
problems where the behaviour of these modes is studied as the upper wall moves 
to infinity and the height of the shear layer remains constant. The limiting 
behaviour is found to depend upon the velocity profile. With a parabolic profile 
the spectrum remains discrete and apparently infinite; for a Blasius profile the 
S family moves towards c, = 1. (c, is the phase velocity.) In  $5 calculations are 
presented for two families of polynomial profiles in order to  study the effect of 
discontinuities in the velocity derivatives at the outer edge of the boundary layer. 
These calculations suggest that when the velocity profile is sufficiently smooth 
at the outer edge, the discrete spectrum is finite. Finally, in $ 6 the possibility of 
a continuous spectrum for Blasius flow located along c, = 1, cL < -a/R is con- 
sidered. It is suggested that such a spectrum does exist, provided that both 
viscous solutions are used and that the amplitudes of the two solutions in the 
free stream are not required to  be equal. 

2. Numerical methods 
The basic numerical method is one that has been employed successfully in the 

study of the stability of the compressible boundary layer. An early account may 
be found in Mack (1965). For a two-dimensional sinusoidal disturbance in a two- 
dimensional mean flow, or more generally with an appropriate transformation, 
the linearized Navier-Stokes equations of the parallel-flow model reduce to the 
four first-order differential equations 

f’ = g, (1) 
g’ = [iR(aU - o) + a2] f + aRU’q5 + iaRn, (2) 
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(3) 4 ’ = -  if, 
a 
R 7r’ = -i-g-a (4) 

f(y), a$(y) and n(y) are the complex amplitude functions of a, 8 and@, the longi- 
tudinal velocity, normal velocity and pressure fluctuation, respectively. U(y) is 
the mean velocity, a the wavenumber and w the frequency. All quantities are 
made dimensionless with respect to the length scale L* and velocity scale U:. 
The Reynolds number R is 77: L*/v*. Asterisks refer to dimensional quantities, 
and the subscript 1 to free-stream quantities. The primes refer to d/dy, where y 
is the dimensionless independent variable y */L*. For the Blasius boundary layer, 

L* = x*/Ri, where R, = U:x*/v*, 

and y becomes the Blasius variable y*Ri/x* and R becomes Ri. For a parabolic 
velocity profile, the maximum velocity UT is located a t  y* = L*, and for the 
problems treated in 0 4, L* is the channel half-width only for Poiseuille flow. 

The fist-order equations (1)-(4) are an alternative way of writing the fourth- 
order Orr-Sommerfeld equation. The present formulation was adopted because 
the incompressible case is an option in the author’s large computer program 
VSTAB, which was set up originally for compressible flow, where it is not possible 
to write a single differential equation. The boundary conditions a t  the lower 
boundary are 

f(0) = 0, # ( O )  = 0. (5) 

f, $,n bounded as y + 00. (6) 

With no second boundary, the upper boundary conditions are 

With a second boundary at y = 2H, the upper boundary conditions are replaced 
by conditions on the symmetry axis located at y = H .  For an antisymmetric 
disturbance, 

f(H) = 0, $ ( H )  = 1; (7 a)  

f ( H )  = 1, # ( H )  = 0. (7 b )  

and, for a symmetric disturbance, 

The symmetry referred to here is the symmetry of the physical disturbance, 
which is symmetric or antisymmetric in the same sense as the mean flow. 

Instead of applying the boundary conditions (6) directly, the differential 
equations are solved analytically in the free stream where U = 1 and U’ = 0,  
and the two solutions selected which satisfy the boundary conditions. These 
solutions provide the initial conditions for the numerical integration, which will 
proceed over the finite interval from some point y1 to the wall. The four solutions 
are of the form exp (hy),  and the values of h are 

where 
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Solutions 1 and 2 are the inviscid solutions; 3 and 4 the viscous solutions. The 
corresponding amplitude functions are 

f@)*(2) = T ia exp ( T cry), (10) 
g(1)~ (2) = ia2 exp ( T ay ), (11) 

#1).(2) = exp ( T 4, $(3),(4) = exP(TPY)Y (12) 

(13) 

f(3),(41 = T i p  exp ( T p y ) ,  
$3’9 (4) = $2 exp ( T py), 

(2) = 2 i (a - w ) exp ( T my) , nCs)* (4) = 0. 

The appropriate solutionsto use to satisfy the boundary conditions a t  y +m are 
1 and 3, i.e. the upper signs of (lo)-( 13). The initial conditions of the numerical 
integration are given by (10)-(13) evaluated at y = yl. The initial conditions 
could also be taken as (lo)-( 13) without the exponential factors, in which case 
the initial values would be independent of yl. However, with (lo)-( 13) as written, 
the initid solutions are independent of yl and this feature turns out to be advan- 
tageous in the method to be explained below for finding the eigenvalues. 

With a second boundary at y = 2H all four solutions are needed. The appro- 
priate form of solutions 2 and 4 for an antisymmetric disturbance are 

f2) = iaexp[-a(2H-y)], f4) = ipexp[-p(2H-y)], (14) 

$2) = idexp[-a(2H-y)], $4) = ip2exp[-p(2H-y)], (15) 

qY2) = exp [ - a( 2H - y)], #4) = exP [-PPH-Y)I, (16) 

d2)= i(a-w)exp[-a(2H-y)], d4)= 0, (17) 

and the signs are reversed for a symmetric disturbance. The initial conditions 
are the sums of solutions 1 and 2 and of 3 and 4 evaluated at y = yl. Thus, even 
with two boundaries i t  is still necessary to integrate numerically only two 
solutions. 

A forward integration method is used to integrate (1)-(4) from the starting 
point y1 to the wall at y = 0 for given values of a, R and w. Both solutions are 
integrated at the same time, which makes a total of 8 complex or 16 real equa- 
tions. Three different double-precision integrators are available in VSTAB , and 
were used at various times in this investigation. They are: (i) a fourth-order 
fixed step-size Runge-Kutta integrator; (ii) a fixed step-size, fixed-order (1-8) 
Adams-Moulton integrator with a Runge-Kutta starter; and (iii) a variable 
step-size, variable-order self-starting Adams-Moulton integrator equipped with 
a variety of error tests. The majority of the calculations were done with the 
Runge-Kutta integrator because of its greater stability, but the additional 
integrators were useful in resolving questionable eigenvalues. The problem of 
spurious eigenvalues is a serious one in a numerical investigation of this type, 
and no eigenvalues were considered definitely established unless they could be 
produced by all three integrators. 

The round-off error problem that arises when the growth of the A, solution is 
so large as to  destroy the linear independence of the two solutions is eliminated 
by use of the Gram-Schmidt orthonormalization procedure. If S is the four- 
component complex solution vector (f, g, $, n) and the Euclidean norm (8*q* is 



Temporal eigenvalue spectrum of the Blasius boundary layer 501 

used (X* refers to the complex conjugate vector), the original vectors ti’(1) and S3) 
are replaced by 

j g 3 )  = #(3)/{5(3)*5(3))4, (18a) 
$1) = [scl, - {jj(3)*sci)} g(3)y(fl(1)*{(i)}j. (18b) 

{@)refers to the quantity in the preceding square brackets. This procedure allows 
eigenvalues to be computed for solution growths of over 10200 with a computer 
that carries 18 decimal digits. As the phase velocity c, = or/a increases towards 
unity, a value of c,. is eventually reached where the growth of the A, solution 
ceases t o  be a problem and orthonormalization is no longer needed. However, 
there can also be a c,., particularly a t  large Reynolds numbers, where for suffi- 
ciently Iarge negative c, (= q / a )  it  proves to be no longer possible to integrate 
the A, solution with sufficient accuracy to determine eigenvalues. This loss of 
accuracy, which is unrelated to the step size, appears to come from a region where 
the A, solution decreases several orders of magnitude a t  the same time as the A, 
solution increases a like amount. Consequently, when the growth of the A, solution 
relative to the A, solution equals the number of significant digits in the computer 
word, all accuracy is lost in the A, solution. It does no good to orthonormalize the 
A, solution with respect to the A, solution, although such a solution can be inte- 
grated accurately, because the orthonormalization is based on an arbitrarily 
selected norm of the vector space, and the orthonormalized vectors are not 
orthogonal in a true geometric sense. Thus, the orthonormalized solution which 
replaces the A, solution is not free of any component of A,, as the geometric 
analogy would suggest, but is a linear combination of the A, and A, solutions. 
This cannot be used to satisfy the boundary conditions at y = 0, which require 
only the A, and A, solutions. The unfortunate result of this behaviour is that there 
is a region of the complex c (=  w / a )  plane that is not accessible to the present 
numerical method. 

At y = 0 a linear combination of the A, and A, solutions, or their orthonormal- 
ized counterparts, satisfies the boundary condition f(0) = 0 and the arbitrary 
amplitude condition n(0) = (1,O). Additional integrations are carried out within 
the framework of a Newton-Raphson search procedure until an o (or c )  is found 
for the specified a and R which satisfies the second boundary condition # ( O )  = 0. 
Even though the scalar products of the orthonormalization use the complex 
conjugate solution vectors, the function # ( O ) ,  or the secular determinant D(O), 
is still either an analytic function of c or numerically indistinguishable from an 
analytic function. Thus the Cauchy-Riemann equations can be used, and only 
a single perturbation integration is required for each iteration. 

The boundary-layer profiles were computed by a separate program, and stored 
as tables with a spacing of Ay = 0.1. In  this computation the outer boundary 
conditions were satisfied at y = 15.0, and the per-step error limit of the variable 
step integrator was set a t  10-l6. The resulting tables are smooth out to y = 15.0, 
but U’ has no more significant digits beyond y = 13.7. In  order to improve the 
profiles at large y and increase the allowable y range, the first term of the asymp- 
totic expansion given by Blasius (1908), 
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was fitted to the calculated value of U' at y = 11.2. With 6*R,$Ix = 1.7207876, 
the constant y was found to be 0.23372766. The velocity U is easily calculable 
from the complementary error function. 

An essential part of any numerical method is a systematic procedure for finding 
all of the eigenvalues in a given region of the complex c or w planes. The automatic 
linear search procedure operates in a manner unpredictable with respect to its 
radius of convergence, and cannot be used for this purpose. An attempt was made 
to use the eigenvalue test quantity &O): first, by examining its magnitude as a 
function of c at a fixed a and R;  and, second, by tracing out the contours of zero 
real and imaginary parts and looking for intersection points. The first method is 
unreliable, and the second has the disadvantage that the closed contours of small 
radius obtained in some regions require a great many calculation points to locate. 
Furthermore, only one-half of the intersection points are eigenvalues, with the 
remaining one-half being singularities of the function # ( O ) .  Finally, the method 
used by Raetz (1966) and also by Kiimmerer (1973) was adopted. In  this method, 
the complex secular determinant 

is computed at enough points in the c plane so that contours of D, = 0 and 
D, = 0 can be drawn. Intersection points of the real and imaginary contours 
locate possible eigenvalues which are then checked by the automatic search 
procedure. This method is tedious, and is sometimes impracticable because of 
the large number of contours; but it has the considerable advantage that no 
eigenvalues are known that are not intersection points, and no intersection 
points have yet been found that are not eigenvalues. 

3. Eigenvalues of the Blasius boundary layer 
3.1. Eigenvalues at a = 0.179, R = 580 

The secular determinant was calculated at a large number of values of c at 
a = 0.179, R = 580-f with a Univac 1108 computer (72 bit double-precision word) 
in order to establish the contours of D, = 0 and D, = 0. The contours obtainedwith 
initial conditions (lo)-( 13) are shown in figure 1 for 0 < c, < I, - 0.8 < ci 6 0.1. 
Along the solid lines D, = 0, and along the broken lines Di = 0. Except a t  the 
intersection points, the contours are located only approximately, since they were 
hand drawn from sometimes widely spaced grid points. However, enough grid 
points were used to establish the correct number of sign changes in D, and Di in 
all parts of the c plane. 

The one intersection point for ci > 0 is called mode 1 and is the unstable 

t These values of a and R constitute (approximately) the temporal case oonsidered by 
Jordinson (1971), where the 01 and R based on displacement thickness, O1.p and R p ,  were 
0.308 and 998, respectively. In accordance with the definitions given in f 2, the a and R 
of this paper m e  to be multiplied by the dimensionless displacement thickness 6*R!lz* to 
give U p  and R p .  
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FIGURE 1. Zero contour lines of secular deteminant for Blasius flow at 
, D - 0 ;  ---, D,  = 0. r -  a = 0.179, R = 580: - 

Tollmien-Schlichting disturbance. For ci < 0, there are a total of six intersection 
points. They are numbered in the order of increasing c, because it is this order, 
rather than that with respect to c2, which the numerical results to be presented 
later show is independent of a and R. The contours shown are the only ones that 
exist in the part of the c plane included in the figure. If the initial conditions are 
taken to be (lo)-( 13) without the exponential factors, the whole c plane is filled 
with contours whose spacing is inversely proportional to yl. Only a few of these 
contours lead to intersections, since the intersection points must still be those 
shown in figure 1. The advantage of the present method of defining the initial 
values is that only a limited number of contours exist, and on each contour there 
is one and only one intersection point. However, some of the intersections may 
occur only for c, > 1, as happens with the partial contour that appears near 
c, = 1 in the lower right-hand part of figure 1. These intersections do not represent 
proper eigenvalues. As is evident from an inspection of (9), when ci < a/R 
continuity of the viscous solution, and thus continuity of the contours, requires 
the use of the A, viscous solution when c, > I rather than the A, solution. The 
A, solution does not satisfy the boundary conditions (6) as y-+co. With the A3 
viscous solution, the contours for c, > 1 bear no relation to those for c, < 1. 
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These contours are for the most part widely spaced, and since they diverge as 
c, and - ci increase no intersections are likely anywhere for c, > 1. For c, < 1 , the 
three contours which cross ci = - 0-8 end up at either c, = 0 (the two left-most 
contours) or at c, = 1 (the Di = 0 contour to the right). There are no other 
contours down to at least ci = -3.0, and at this ct the secular determinant is 
almost constant for all c, (except possibly near c, = 1, where the integration 
breaks down). 

The seven intersection points of figure 1, which were originally located only 
approximately by the contour method, were computed accurately by the auto- 
matic search procedure. The results are listed in table 1. Since the magnitude of 
#(O) was reduced to at least 1 x 10-6 by the search procedure, the intersection 
points are confirmed to be eigenvalues. The interest in doing these calculations 
was more in finding the eigenvalues than in providing precise numerical values.? 
A step size s of 0.1 is sufficient for this purpose for all modes a t  R = 580. The step 
size listed in the table is roughly the largest that will produce four-place accuracy 
with the Runge-Kutta integrator. The value of yl, the starting point of the 
numerical integration, is not critical except when c, starts to approach unity. 
For R = 580, y1 = 8 is adequate for modes 1-6, and yl = 10 for mode 7. 

3.2. Effect of Reynolds number and wavenumber on eigenvalues 
With the eigenvalues known at a = 0.179, R = 580, it was not dificult to extend 
the calculations by extrapolation to  other Reynolds numbers with a remaining 
fixed. It was found that with increasing R each eigenvalue moves to a smaller 
c, and - ci. A search for additional eigenvalues at R = 1000 in the region between 
mode 7 and c, = 1 yielded three more eigenvalues. The 10 eigenvalues are shown 
in figure 2 (a )  and listed in table 1. They form the same kind of pattern as a t  
R = 580. The odd-numbered modes lie along an ‘upper line’, and the even- 
numbered modes along a ‘lower line ’. These two lines are only slightly displaced 
from similar lines which could have been drawn in figure 1. Consequently, as the 
Reynolds number increases with a fixed, all eigenvalues move to the left essenti- 
ally along the two lines, and new eigenvalues appear at the c, = 1 boundary, first 
on one line, then on the other. These new eigenvalues are actually the ‘eigen- 
values’ mentioned previously that can be calculated for c, > 1 with the A, 
solution. At R = 1000, y1 = 8 is sufficient for all eigenvalues up to and including 
mode 8; yl = 10 is required for better than three-place accuracy in mode 9, but 
gives no convergence a t  all for mode 10. Convergence is obtained for mode 10 
with yl = 12, but the eigenvalue does not become independent of y1 until yl = 14, 

A further increase of R to 2000 yielded the results shown in figure 2 (b) and 
listed in table 1. Now 13 modes are found for c, < 1 lying along upper and lower 
lines, again only slightly displaced from their positions at R = 1000. These lines, 
although fictitious, are of great assistance in extrapolating the eigenvalues to 

t These eigenvalues have now been calculated with high accuracy by Dr A. Davey (see 
Davey 1973 for the method used); by Dr D. J. 12. Houston in association with Dr Sordinson 
using a modification of Jordinson’s original finite-difference method; and by Dr H. 
Kiimmerer, also using a Gnite-difference method. 
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FIGURE 2. Distribution of eigenvalues of Blasius flow in c plane at tl. = 0.179 and 
four Reynolds numbers R: (a) 1000; (b )  2000; (c) 6000; (d )  10 000. 

higher Reynolds numbers. Because their location in the c plane is only a slowly- 
varying function of R, they make it easy to follow the movement of the known 
modes as R increases. Even more important, the predictable spacing of the eigen- 
values along each line makes it possible to find the new modes which move across 
c, = 1 without recourse to the contour method. The fht 11 modes were obtained 
with yl = 8, mode 12 with y1 = 10 and mode 13 with y1 = 12. Because of the 
round-off error problem mentioned in 3 2, convergence difficulties are present for 
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1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

0.3641 
0.2897 
0.4839 
0.5572 
0.6862 
0-7936 
0.8874 

7 

0.3283 
0.1429 
0-2172 
0-2603 
0.3471 
0.3604 
0.4352 
0.4519 
0.5158 
0.5375 
0.5921 
0-6188 
0.6657 
0.6971 
0.7377 
- 

0*0080 0.100 
- 0.2769 0.050 
- 0.1921 0.050 
- 0.3653 0.050 
- 0-3307 0.033 
- 0.4341 0.033 
- 0.4147 0.033 

R = 5000 
, 

- 0.0294 0*0500 
- 0.1484 0.0250 
- 0.0456 0.0500 
- 0.2037 0.0500 
-0.1367 0.0500 
- 0.2491 0.0333 
- 0.2042 0.0250 
- 0.2893 0.0250 
- 0.2559 0.0250 
- 0.3256 0.0250 
- 0.2989 0.0250 
- 0.3580 0.0250 
- 0.3356 0.0250 
- 0.3872 0.0125 
- 0.3673 0.0125 

0.3383 
0.2408 
0.4155 
0.4551 
0-5773 
0.6443 
0.7341 
0,8193 
0.8890 
0.9889 

0.0048 
- 0.2391 
- 0.1425 
- 0.3187 
- 0.2730 
- 0.3843 
- 0.3569 
- 0.4348 
- 0.4154 
- 0.4686 

0.050 
0.050 
0.050 
0.050 
0-050 
0.050 
0.050 
0.050 
0.025 
0.033 

R = 10 000 - 
0.3250 - 0.0325 0.0250 
0.1144 -0.1190 0.0250 
0-1684 - 0.0387 0.0250 
0.2070 - 0.1653 0.0333 
0.2686 - 0.0974 0.0250 
0.2847 - 0.2013 0.0250 
0.3466 - 0.1540 0.0250 
0.3552 - 0.2363 0.0250 
0.4111 -0.1989 0.0250 
0.4209 - 0.2667 0.0250 
0.4709 - 0.2366 0.0250 
0.4828 - 0.2952 0.0125 
0.5278 - 0.2699 0.0125 
0.5469 - 0.3129 0.0125 
0.5790 - 0.2942 0.0125 
0.6058 - 0.2948 0.0125 

0.3089 
0.1918 
0.3425 
0.3553 
0-4651 
0.4986 
0.5844 
0.6297 
0.6982 
0-7638 
0.8092 
0.8741 
0.920 

- 0.0166 
- 0.1961 
- 0.0816 
- 0.2648 
- 0.2079 
- 0.3214 - 0.2855 - 0.3710 
- 0.3447 
-0.4120 - 0.3905 
- 0.4439 
- 0,426 

0.050 
0.050 
0.050 
0-050 
0.050 
0.050 
0.050 
0.033 
0.025 
0.025 
0.025 
0.025 
0.033 

TABLE 1. Eigenvalues of Blasius flow at tl: = 0.179 

mode 13. The c listed in table 1 has only three significant digits, and (p(0) couldnot 
be reduced much below 0.001. Mode 14, which can be estimated by extrapolation 
to be at c = (0.990, - 0.475), could not be resolved a t  all. 

With another increase of R to 5000, the 13 known modes were determined as 
at R = 2000 and two additional modes, 14 and 15, found by extrapolation along 
the upper and lower lines. The 15 modes are shown in figure 2 (c) and listed in 
table 1. Attempts to locate additional modes by extrapolation failed. Because 
the oscillations of the viscous solution increase with Reynolds number and c,, it 
was necessary to use a step size of 0.025 for the modes beyond six and of 0.0125 
for modes 14 and 15 in order to have four-place accuracy. Convergence is again 
a problem for the last two modes. With Ac = 0.001 the search procedure is con- 
sistent from iteration to iteration, but $ ( O )  could only be reduced to about 0.001. 
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However, there appear to be four significant figures in the eigenvalues rather than 
the three of mode 13 at R = 2000 for a similar value of $ ( O ) .  

At R = 10 000 the 15 modes known at R = 5000 were readily determined and 
are shown in figure 2 (d) and listed in table 1. Modes 14 and 15 are slightly but 
definitely displaced upwards from the upper and lower lines and for this resaon 
the lines are terminated in figure 2 (d) at modes 12 and 13. Since modes 14 and 15 
have a t  least one more significant figure than a t  R = 5000, and mode 16 could not 
be found by extrapolation, the contour method was used to find the next modes 
in the sequence. Five additional modes, 16-20, were found and are shown in 
figure 2(&). In  distinct contrast to the previous results, the new modes lie 
on a single straight line with a small positive slope. The change of pattern is 
so complete as to raise the possibility that modes 16-20 are spurious. In  
support of their reality, it can be pointed out that they are independent of yl ,  
and depend on the step size only to the extent of an improvement in the apparent 
accuracy as s becomes smaller. In  addition, mode 16 was verified with the fixed 
step-size Adams-Moulton integrator with s = 0.01. However, for larger s there 
is no indication at all of an eigenvalue. Since the Runge-Kutta integrator gives 
convergence for s as large as 0.025, it is perhaps not too surprising that modes 
17-20 cannot be verified at all, even with s as small as 0.005. The verification of 
mode 16 does establish the change of pattern, but the failure to verify modes 
17-20 makes it prudent to accept these modes only provisionally. Eigenvalue 
searches with different values of Ac give some idea of which digits are significant; 
and, according to this criterion, the eigenvalues of modes 16-20 all have 3-4 
significant digits, apart from whatever influence the step size has. 

All of the calculations that have been carried out for a = 0.179 are summarized 
in figures 3 (a) and ( b )  where c, and c$, respectively, are given as functions of R for 
R > 10. It can be noted from the figures that, except for behaviour connected 
with the fundamental mode, the mode order originally given in figure 1 by 
numbering with respect to c,is preserved at all Reynolds numbers, while the odd- 
numbered ci curves repeatedly cross the even-numbered. Below R = 25 only the 
fundamental mode exists, and below R = 3.9 there are no modes a t  all. 

As the Reynolds number increases all modes move towards c = 0 with the 
exception of mode 3. The c, and ci marked inv. in figure 3 were obtained from the 
author’s inviscid stability program ISTAB for a = 0.179. An indented contour 
of integration was used, which passes under the singular point a t  U = c. Here U 
is the continuation by a truncated power series of the mean velocity U onto the 
complex y plane. This procedure follows from the demonstration by Lin (1955) 
that eigenvalues of the inviscid equation obtained in this manner are the R+oo 
limit of eigenvalues of the Orr-Sommerfeld equation. The present calculation 
offers an example of the correctness of this technique, and also of the power of 
Gram-Schmidt orthonormalization to preserve linear independence at high 
Reynolds numbers. The inviscid eigenvalue was used as the initial guess in the 
viscous program at R = 106. Convergence to a viscous eigenvalue only slightly 
different from the inviscid eigenvalue was obtained in two iterations. When this 
eigenvalue was traced back to lower Reynolds numbers it was found to connect 
not with mode 1, the fundamental, but with mode 3. Thus, as figure 3 indicates, 
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FIGURE 3. Effect of Reynolds number on c, and c, of the firet 16 modes of 
Blasius flow at a = 0.179. 

modes 1 and 3 switch identities between R = 2000 and 3000. That is, for R greater 
than about 2500, the point of closest approach of the two modes in figure 3, 
the curve that starts out as mode 3 at low R is actually mode 1 and vice versa. 
This change of identity has already been taken into account in labelling the modes 
in figures 2 (c) and (d). The appearance of figure 3 suggests that there is probably 
an a, R combination a t  which modes 1 and 3 actually intersect. 

One mode, therefore, has an inviscid limit; but what of the others? The impres- 
sion gathered from figure 3, of movement towards c = 0, is reinforced if c, and c, 
are plotted against R-l. Furthermore, if the trajectories of the modes are plotted 
in the c plane, the first few modes seem clearly headed for the origin. It is useful 
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FIGURE 4. Effect of wavenumber on c, and ci of  the first 6 modes of 
Blmiua flow at R= 337. 

to recall that Lin (1961) has shown that all viscous modes need not have an 
inviscid limit. Thus, no matter how closely a given mode may approach c = 0, or 
some other point, as R increases indefinitely, there is no requirement for this 
point to be an eigenvalue of the inviscid equation, or for the mode to take on an 
inviscid character as does mode 1. Even with Lin's technique, the only inviscid 
damped solution known to exist is the R-too limit of mode 1. 

Finally, it remains to say something about the dependence of the eigenvalues 
on a. In  figures 4 (a) and (b) ,  the variation of c, and cI,  respectively, with a is shown 
for R = 337 and a c 0.2. As a decreases, all modes, except possibly the funda- 
mental, move out of the c, < 1 region of the c plane, just as they do for decreasing 
R a t  fixed a. As also happens with changes in R, the order of the modes other than 
the fundamental is preserved in the numbering system with respect to c,. In  
figure 4(b),  by contrast, the curves of even- and odd-numbered modes have 
different slopes and cross one another. Only for a! < 0.1 does the order of the 
modes in terms of ci correspond to the numbering system. 
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1 0.0462 
2 -0.872 
3 -0.574 
4 -0.756 
5 -0.646 
6 -0.692 
7 -0.634 
8 
9 

- 
- 

10 - 

1.32 
6.11 x 

2-88 x lo4 
2.33 x 10" 
1.01 x 10-8 
2.79 x 

6.74 x 10-3 

- 

0.109 
- 0.889 
- 0.401 
- 0-799 
- 0.618 
- 0.750 
- 0.651 
- 

0.509 - 0.194 
2.63 x -0.893 
0.0501 - 0.390 
8.56 x - 0.821 
3.63 x lo3 -0.542 
3.03 x 10-4 - 0.782 

6.09 x lo4 - 0.761 
2.16 x lo-' -0.616 

2.02 x lo4 - 0.647 
1.04 x lo4 -0.744 

0.285 
2.10 x 10-8 
0.0557 
4.38 x lod 
0.0105 

3-76 x lo4 

2-29 x 
3.48 x lo4 

1.38 x 1 0 4  

2.34 x 1 0 4  

TABLE 2. Kinetic-energy change in distance 6 and period T for 10 modes at  
R = 580, 2000, 10 000 and a = 0.179 

As a increases above 0.2, modes 1 and 3 continue to approach each other until 
about a = 0.30 for c, and a = 0-45 for ci, after which they slowly diverge. Since 
the c, of mode 3 is close to the inviscid eigenvalue computed by Lin's technique for 
u > 0.45 in spite of the low Reynolds number, it  can be concluded that modes 
1 and 3 again change identity, as they do with increasing R at constant a .  The 
behaviour is clearer at R = 5000, which for a = 0.179 is above the Reynolds 
number where the identity change takes place (R  x 2500). For a > 0.179 both 
c, and ci of mode 1 (mode 3 below R = 2500) follow almost exactly the inviscid 
eigenvalues. Mode 3 (mode 1 below R = 2500) has a constant ci for a > 0.15 up to 
the limit of the calculations at a = 0.26. Both the c, and ci curves of modes 1 and 
3 cross one another a t  a = 0.14 and 0.21, respectively, but there is no change of 
identity, and neither of these points is a point of degeneracy. 

3.3. Physical properties of the modes 
As is evident from table 1, all of the modes except mode 1 are highly damped. 
For example, the least-damped additional mode, mode 3, has a damping rate at 
R = 580 which is 24 times greater than the amplification rate of mode 1. In  order 
to  bring out the consequences of such high dampingrates, it  is helpful to introduce 
the dimensionless mean kinetic energy of a disturbance 

(21) E = +( (d2) + (v'~)). 

A prime now refers to a fluctuation, and < ) to an average over a wavelength. 
The reference energy is p*U:2; p* is the density. The fractional energy change 
in t* = S/c:, the time required for a disturbance of phase velocity c,* to advance 
one boundary-layer thickness S, is 

(22 )  

y s  = SR/x* is the Blasius variable evaluated a t  S. The value of y8 is 6-011 when 
8 is defined as the y* where U = 0.999. Another measure of energy change is the 

(AEIE), = exp (2ay8ci/c,.) - 1. 
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1 2 3 4 5 6 7 

2.92 -0.395 -0.651 -0.151 -0.148 -0.068 -0.046 
1.90 0.606 0.357 0.849 0.852 0.932 0.954 

P/l@l 
v/ IEI - - - - A/lEl -0.02 0.002 0.008 

TABLE 3. Contribution to integrated energy loss (or gain) of production and 
viscous dissipation terms, R = 580, u = 0.179 

ratio of the energy after one period T*, E(T*),  to the initial energy E(0). This is 

E(T*)/E(O) = exp ( 4 7 4 ~ ~ ) .  (23) 

The above two energy ratios are listed in table 2 for the first 10 modes a t  
R = 580, 2000, 10000 and a = 0.179. While the Tollmien-Schlichting wave 
increases its energy at R = 580 by 4.6 yo every boundary-layer thickness, and by 
32 yo every cycle, all of the damped disturbances except mode 3 lose over 99 % 
of their energy in a single cycle, and from 54 % to 89 % in one boundary-layer 
thickness. Even the least-damped additional mode, mode 3, retains only about 
5 % of its initial energy at R > 2000 after one cycle. As an indication of how 
rapidly even a low damping rate depletes energy, mode 1, which has a damping 
rate at R = 2000 about double the amplification rate at R = 580, loses 49 % of its 
energy in a single cycle. 

The sources of the energy change can be identified by integrating the local 
kinetic-energy equation from y = 0 to y1 to yield 

P- V + A  = 2. (24) 

I n  (24), & is the change of the integrated kinetic energy per unit time, P is the 
energy produced by the Reynolds stress, V is the disturbance viscous dissipation, 
and A consists of pressure-velocity and shear stress-velocity correlations. If 
c, $: 1, A+O as yl-+m. The three ratios P/l$l, V/l&] and A]&] are listed in 
table 3 for the seven modes of figure 1, and were obtained by numerical integra- 
tion from y = 0 to y1 = 12 of the terms of the local energy-balance equation. 

Table 3 serves to emphasize the disparity between mode I and the damped 
modes. For mode 1, three times as much energy as is gained by the disturbance 
is produced by the Reynolds stress, and two-thirds of this energy is lost to 
viscous dissipation. In  contrast, for the other modes energy is lost both by the 
action of the Reynolds stress and by dissipation. For mode 3,65 yo of the energy 
loss is from the Reynolds stress, an amount that decreases to 5 yo for mode 7. 
An interesting feature concerning the viscous dissipation is that as the mode 
number increases the ratio of the local viscous dissipation V,  to  the local kinetic 
energy Eg becomes important over more and more of the boundary layer and 
also tends to be distributed more uniformly. The y*/6 within which V,/E, > 0.1 
increases from 0.6 for mode 4 to greater than 2.0 for mode 7. 
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flow at a = 1.0, R = 10 000. 0, A family; v, P family; a, 8 family. 

4. Eigenvalues of flows with two boundaries 
4.1. Plane Poiseuille flow 

In  an effort to understand why so few eigenvalues were found in the calculations 
of 93, it  will be instructive to examine the eigenvalue spectrum of plane 
Poiseuille flow, which is known to be infinite. Orszag (1971) has accurately com- 
puted the first 17 temporaI modes of antisymmetric disturbances (even stream 
function) a t  a = 1.0, R = 10 000 (here L* = H*, the half-width of the channel), 
and the first 15 modes of symmetric disturbances (odd stream function). His 
calculations of antisymmetric disturbances have been extended by the contour 
method together with the linear search procedure to larger values of -ci, and 
these results are shown together with Orszag's in figure 6 and listed in table 4. 
The eigenvalues have been classed by the present author into three families, 
A, P and S. The more usual mode number n, based on arranging the eigenvaluea 
in order of decreasing c,, is also listed in column 2 of this table. 

The nine members of the A family are distributed along upper and lower lines 
which are not far removed from the similar lines of figure 2. As indicated by 
figure 6, where portions of the 0, = 0, D, = 0 contours are sketched in the region 
0.5 c c, c 1, - 0.4 < c, < - 0.1, the contour patterns for modes A l-A 8 are close 
to the patterns in figure 1. (Compare modes 6 6  of figure 1 with modes A &A 8 in 
figure 6.) A9 is a transitional mode that could perhaps have been assigned to  
either the P or S families; but, since it fits the spacing of the A family rather than 
either of the other families, it has been classified with the A family. The contours 
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FIGURE 6. Zero oontour lines of secular determinant for plane Poiseuille flow at a = 1.0, 
R = 10 000: - ,Or  = 0; ---, D, = 0. 0, A family; v, P family; n, S family. 

for the P and S modes are an entirely new feature, and bear no relation to anything 
in figure 1. They either originate or end at c, = 1, and for the most part do both. 
Except near the intersection points they form a periodic sequence of lines roughly 
parallel to the c, axis. 

The appearance of figure 5 would by itself suggest classifying the eigenvalues 
into different groups, but theoretical support is also available. Schenstsd (1960) 
not only demonstrated that the spectrum is infinite, but also succeeded in 
deriving approximate formulae for three distinct families of eigenvalues. One 
family, which had originally been obtained by Pekeris (1948), is almost exactly 
the family denoted here by the letter P and calculated by Orszag (1971). A second 
family is perhaps related to the A family, although it lies on only a single line, and 
the third family, which unlike the first two is infinite in extent, is the asymptotic 
representation of what is labelled here as the S family. According to Schensted, 
ci = -n2+/aR for this family, and c, is unspecified. The last mode calculated, 
S 14 (n = 33), is within 2 % of this value, but even closer agreement is given by 
the formula - (4n - 1)2/16aR, which was derived by Grosch & Salwen (1968) in 
their extensive study of the spectrum of plane Poiseuille flow. The ci given by this 
latter formula is listed in column 5 of table 4. The asymptotic value of c, 
according to Grosch & Salwen is 8, the average velocity of the mean flow in the 
channel. 

33 F L M  73 
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Mode n 

P 1  2 
P 2  3 
P 3  4 
P 4  5 
P 5  7 
P 6  8 
P 7  10 
P 8  12 
P 9  14 
P 10 17 
A 1  1 
A 2  9 
A 3  6 
A 4  13 
A 5  11 
A 6  15 
A 7  16 
A 8  I9 
A 9  18 
s 1  20 
5 2  21 
s 3  22 
5 4  23 
s5 24 
S 6  25 
5 7  26 
5 8  27 
s 9  28 
s 10 29 
s 11 30 
s 12 31 
S 13 32 
S 14 33 

Cr 

0.96464 
0.93635 
0-90806 
0-87976 
0.85145 
0.82314 
0-79482 
0-76649 
0.73812 
0.70887 
0.23753 
0.19006 
0-34911 
0.36850 
0.47490 
0.51292 
0.58721 
0.63610 
0.68286 
0-67759 
0.67451 
0.67321 
0.67232 
0.67159 
0.67097 
0.67043 
0.66997 
0.66957 
0.66923 
0.66894 
0.66868 
0.66846 
0.66826 

c1. 
- 0.03519 
- 0.06325 
- 0.09131 
-0.11937 
- 0.14743 
- 0.17548 
- 0.20353 
- 0.23159 
- 0.25965 
- 0.28769 
+ 0.00374 
- 0.18282 
- 0.12450 
- 0.23382 
- 0.20873 
- 0.28663 
-0.26716 
- 0.32519 
- 0.30761 
- 0-34373 
- 0.38983 
- 0.43580 
- 0.48326 
- 0.53241 
- 0.58327 
- 0.63588 
- 0.69025 
- 0.74642 
- 0.80439 
- 0.86418 
- 0.92582 
- 0.98932 
- 1.05468 

-(an- l ) 2 7 P  

16uR 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

- 0.3850 
- 0.4249 
- 0.4669 
- 0.5108 
- 0.5567 
- 0.6046 
- 0.6549 
- 0.7062 
- 0.7600 
- 0.8158 
- 0.8735 
- 0.9332 
- 0.9949 
- 1.0586 

TABLE 4. Eigenvalues of antisymmetric disturbances of plane Poiseuille flow 
at u = 1-0, R = 10 000 (n = 1-17 from Orszag 1971) 

4.2. Arti$ciaEflows with H+m 
Schensted (1960) proved that any channel flow has an infinite discrete spectrum 
but there is no such general result for a flow with a single boundary. In  order to 
gain deeper understanding of the difference between the spectra for finite and 
infinite intervals, two artificial flows will be considered, in which the upper 
boundary moves to y+m. The emphasis will be on how the S family changes 
with H ,  the channel width. It is the absence of the S family and the related P 
family that distinguishes the Blasius spectrum from that for Poiseuille flow. The 
A modes are present in both flows. Figure 6 provides the essential information 
needed to carry out the investigation in a straightforward manner. Since the 
S modes are associated with the periodic sequence of nearly parallel contours, all 
that is necessary is to look for periodicity in D, and Di as cd vanes for some fixed c, 
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over a range of c, less than, say, - 0.4. If periodicity is found, then S modes must 
exist somewhere to the left of the chosen c,. 

The first artificial flow consists of a parabolic velocity profile 1 - (1 - Y ) ~  for 
0 < y < 1 and 2H-  1 < y < 2H, and a uniform flow between y = 1 and 
y = 2H - 1. H will be varied from 2 to 8 with a and R based on L*, the height of 
the shear flow, remaining constant. A fairly complete contour pattern has been 
worked out for H = 2 in order to get oriented and i t  is somewhat more compli- 
cated than figure 6. The A family, except for A 9, is only slightly displaced from 
its location a t  H = I, but the P family lies along two lines rather than one. The all- 
important S family is shifted right to about c, = 0.75, with an initial spacing not 
much different from that with H = 1. No actual eigenvalues were computed with 
the linear search procedure in the calculations to be discussed in the remainder 
of this section, so the locations referred to are only approximately determined 
intersection points. The main new feature present with H = 2 is another family 
of eigenvalues with a c, which decreases from 0-98 near c, = -0.1 to 0.95 for 
c, < - 0-3. The calculations did not extend below ci = - 0.5. For c, < - 0.3 the 
contour spacing at c, = 1 is only one-half what it is to the left of the new family, 
and the extra contours turn back to c, = 1 at the intersection points which form 
these eigenvalues. 

With an increase of H to 4, the main part of the contour pattern remained 
virtually unchanged. Consequently, H = 2 is already close to the asymptotic 
state, as was verified by calculations with H = 8. However, there is an important 
change in the eigenvalue family near c, = 1 as H increases. The spacing of the 
contours at c, = 1 is inversely proportional to H ,  thus the number of eigenvalues 
increases with H .  At the same time, the eigenvalues move closer to c, = 1. This 
behaviour is discussed more fully below, where it reappears in a somewhat 
different guise. 

The second artificial flow consists of a Blasius velocity profile arranged sym- 
metrically about the channel centre-line at y = H ,  where L* is now the Blasius 
length scale. With H large and y1 also large to check whether the results are 
independent of yl, the asymptotic form of U ( y )  given by (19) can be used for the 
outer part of the profile, or the profile can be truncated at some arbitrary large y 
and U = 1, U’ = 0 used from that point to the symmetry axis. Equivalent results 
were found from either method for a truncation y greater than 8. H was varied 
from 8 to 60, and the calculations were restricted for the most part to hd ing  
periodicity in D, and D, for c, < - 0.4, thereby locating the start of the S family 
of eigenvalues. 

In  the first calculation, with H = 8, the sought-for periodic sequence of zeros 
of 0, and D, was found a t  c, = 0.82 for c, between - 0.4 and - 0.6 where the 
calculations ceased. The contours are indeed nearly parallel lines for c, 2 0.82, 
and the curves come together to form four intersections a t  about c, = 0.79. These 
intersection points are interpreted to be S-family eigenvalues. With H increased 
to 10, there is no longer periodicity at c, = 0.82. An isolated intersection was 
found near c = (0-79, - 0-43), which is of the same type and at almost exactly the 
location of mode 6 in figure 1. For c, > 0.86 there is again a periodic sequence 
of parallel lines, from c, = -0-4 to at least -0.7, which form an S family 

33-2 
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FIUWRE 7. Effect of charnel width on S-family eigenvalues of flow made up of 
two Blaaius boundary layers: a = 0.179, R = 580. 

0.76 

intersection at a c, of about 0.83. Unlike the first artificial flow, the spacing of 
the contours remains unchanged all the way to c, = 1, so there is no second family 
of eigenvalues near c, = 1. 

As H is increased further, the S family does not reach an asymptotic state at  
some c, < 1, but continues to move towards c, = 1, while a t  the same time the 
spacing between the eigenvalues decreases. The c, of the intersections, denoted 
by (c,),, and the spacing, denoted by (Ac,),, have been plotted in figure 7 against 
H-l from H = 8 to 60. It is fairly easy to obtain (c,.)~, because it is almost inde- 
pendent of ci, at least up to the limit of the calculations at ci = - 1, but (Ace, is 
more problematical because of its unknown dependence on c,. The (Ac,), of the 
figure is intended to represent an average spacing in the region - 0.8 < ci < - 0.6. 
In  any case the tendency is clear: (c,),+ 1 and (AC&-+ 0 as H-tco. Thus, the 
S family acts not as i t  did for the first artificial flow with a parabolic velocity 
profile, but like the additional family of eigenvalues that appeared near c, = 1 
with H > 1. It should be pointed out that a non-uniform limit is involved here. 
For any c, < 1, an asymptotic state with no periodicity can be achieved by 
making H sufficiently large, but the required H increases indefinitely as c,+ 1. 
At c, = 1 there is no limit. The two viscous solutions do not diminish in amplitude 
as y (or 2H - y) increases, and the two-wall problem does not reduce to the one- 
wall problem as H + 00. Consequently, whatever takes place at c, = 1 as H + co 
has no application to the boundary-layer problem. What can be said is that, in 
complete agreement with figure 1, no part of the infinite discrete spectrum of the 
finite interval exists in the region c, < 1, ct > - 1 as H + co, nor does it approach 
a continuous spectrum anywhere in this region. 
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5. Other flows with a single boundary 
The existence of the S family for a parabolic velocity profile, and its absence in 

the same limit for the Blasius profile, suggest an investigation into the influence 
of the profile on the spectrum for flows with a single boundary. This is limited here 
to profiles that can be described analytically, and to the initial part of the S 
family of eigenvalues. The most obvious difference between a parabolic and 
a Blasius profile is that in the latter all derivatives of U go to zero as y+ 00, while 
in the former U" is discontinuous at y = 1. This feature will provide the focal 
point of the following investigation. 

According to (19), U' N exp ( - y z )  in the outer part of the Blasius boundary 
layer. If the profile is simply truncated at y = 8, no effect at all on the results 
could be found. The asymptotic suction profile U = 1 - exp ( - y) also has all 
derivatives approaching zero as y + 00, but at t i  slower rate. However, the result 
is the same: for sufficiently large H ,  there is no periodicity in D, and D$ in the 
region where the S modes might be present. 

The other profiles studied all belong to two families of polynomials. The first 
family is U = 1 - (1 - y)", which for m = 2 is the parabolic profile of $4. With 
this profile and no upper boundary, the S modes for tc = 1.0, R = 10 000 are the 
same as in the two-wall problem for H > 2 in the region covered by the calcula- 
tions between c, = - 0.4 and - 0.8. The spacing is about the same as for Poiseuille 
flow, but one difference is that c, increases with increasing mode number instead 
of decreasing. Thus, c, goes from 0-74 near c, = - 0.4 to 0.77 near c, = - 0.8. As 
the polynomial degree m increases above two, the mode closest to c, = -0.4 
shifts to the right: c, = 0.81 for m = 3, and c, = 0.87 for m = 4. This shift is in 
accord with the expectation that a smoother profile a t  y = 1 might give results 
closer to true boundary-layer profiles. 

A better approximation to a boundary layer is provided by the Pohlhausen 
method polynomials. For flat-plate flow the cubic, quartic and quintic profiles are 

1.5~j - 0.5ij3, 4.6410, 1.7404, (25) 

1.7507, (26) 
2-53 - 5ti3 + 5?j4 - 1*5g6, 1,7589, (27) 

jj = y/S, and 6 and 6* are the boundary-layer thickness and displacement thick- 
ness, respectively, in Blasius units. The calculations were performed at tc = 0,179, 
R = 580 as for the Blasius profile. 

With the cubic, two eigenvalues were found in the interval - 0.6 < ci < - 0.4 
at about c = (0.73, - 0.45) and (0.75, - 0.53). These eigenvalues are accepted as 
S modes because their contour pattern is the same as for the S family in figure 6. 
With the quartic, the eigenvalues move to about c = (0.84, -0.48) and (0.85, 
- 0.56). Finally, with the quintic five eigenvalues were found between c, = - 0.4 
and - 0-8 at c, = 0.90, 0.91, 0.92, 0.93 and 0.94. The rapid progression of these 
modes towards c, = 1 suggests that their number may not be infinite, although 
a similar movement occurs for the parabolic profile with H > 2 in the two-wall 
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problem where the spectrum is known to be infinite. Unfortunately, the inability 
to integrate near c, = 1 for cf < - 0.8 precluded any further investigation. 

What this limited study shows is that there are approximate boundary-layer 
profiles that have a t  least a remnant of the S family of eigenvalues. As the profile 
becomes more realistic in the sense of having more zero derivatives at the outer 
edge of the boundary layer, these eigenvalues move towards c, = 1. A reasonable 
inference is that any real boundary-layer profile, in which all derivatives go to 
zero as y+w, will give a result similar to that for the Blasius and asymptotic 
suction profiles (i.e. no infinite discrete spectrum for c, -= 1 of the type that exists 
for channel flows). 

6. Concluding remarks 
The mathematical questions of whether the eigenvalue spectrum of the Blasius 

boundary layer is infinite and the eigenfunctions complete cannot be answered 
definitively by a numerical investigation. What the latter can do, besides the 
actual calculation of certain eigenvalues, is to narrow the range of possibilities. 
If it  is accepted that all discrete eigenvalues will be given by the intersections of 
the zero contour lines as in figures 1 and 6, then it has been shown that, for the 
conditions of figure 1, the only such eigenvalues in the region 0 < c, < 2, ci > - 3 
are the seven modes listed in table 1 and shown in figure 1. The calculations of 3 4 
for the two-wall flow with Blasius boundary layers support this conclusion, by 
showing that (at least for c, > - 1) the finite-interval eigenvalues of the S family 
can be moved to c, > k,  where k is any c,, < 1, by making the channel width 2H 
sufficiently large. 

This suggests a close look a t  c, = 1 as a possible locus of additional eigenvalues. 
Since A, and A, are pure imaginary for c, = 1, ci c -a/R according to (9), the 
viscous solutions are periodic in y and extend to infinity with constant amplitude. 
With two walls, there is a discontinuous limit involved, so that H-tco with 
c, .c 1 and H a m  with c, = 1 are fundamentally different. Therefore, figure 7 
cannot be interpreted as showing a continuous spectrum for the two-wall problem 
at c, = 1 in this limit. Indeed, the symmetry condition imposed severely restricts 
the possibilities, and there is no reason to expect a continuous spectrum when the 
viscous solutions differ only in phase. For any value of H ,  no matter how large, 
there will always be an infinite discrete spectrum in the c, < 1 part of the complex 
plane, with the location and spacing of the eigenvalues given by figure 7. For 
arbitrarily large H ,  the modes are arbitrarily close to one aaother, but they are 
still discrete and do not form a continuum. When H+co with c, = I, 8 limiting 
state is quickly reached as soon as the influence of the second inviscid solution is 
negligible. There are only phase changes as the upper wall moves further away, 
and the numerical calculations show no evidence of eigenvalues along c, = 1 
under these conditions. 

Once the discrete spectrum of Blasius flow is accepted as finite, the only possi- 
bility of representing an arbitrary disturbance by a superposition of eigenvalues 
is for there to be a continuous spectrum somewhere. The numerical results would 
seem to allow c, = 1, ci < - a/R as the only real possibility for the location of such 



Temporal eigenvalue spectrum of the Blmius boundary layer 519 

a spectrum. For these values of c, and ci, both viscous solutions satisfy the outer 
boundary condition of boundedness, and with an infinite interval there is no 
longer a symmetry condition to restrict the relative amplitudes of the two solu- 
tions. With three solutions available to  satisfy two homogeneous boundary con- 
ditions a t  the wall, there cannot fa,il to be a continuous spectrum. Even with 
boundary-layer profiles which are discontinuous at y = 6, so that there is an 
inh i t e  discrete spectrum, there would still be a continuous spectrum at c, = 1. 
Only an argument which rules out the use of the second viscous solution, or 
restricts its amplitude with respect to the first viscous solution, would also rule 
out the continuous spectrum. 

The program VSTAB contains an option developed for sound interaction 
problems in supersonic flow that permits the magnitude of any solution, either 
viscous or inviscid, to be specified, then calculates the magnitudes of the solutions 
normally used to find discrete eigenvalues such that a linear combination of the 
three solutions satisfies the wall boundary conditions. Accordingly, with c, = 1 
the magnitude of the A, solution was fixed and the magnitudes of the A, and A4 
solutions calculated for a range of c, < -a/R with a = 0.179, R = 580. Inci- 
dentally, with both the A, and A, solutions present, the orthonormalization 
procedure removes the round-off error problem mentioned in $ 2  for large -c, 
with only the A, solution. The results show that as c4+ - a/R from below, the 
amplitude ratio of the two viscous solutions approaches unity, but for all other 
c, < - a/R, the amplitude of the A, solution is smaller than that of the A, solution. 
When c, = - 2a/R, the ratio is 0.7795; a t  - 200a/R, it is 7-650 x lo-,; and at 
- 2000a/R, it  is 1.807 x These are free-stream ratios; a t  the wall, the two 
solutions are of comparable magnitude because of the behaviour mentioned in 
$ 2  after (18). 

To summarize, the numerical results presented here support the following 
conclusions. For a finite interval, no matter how large, there is always an infinite 
discrete spectrum of eigenvalues whose spacing decreases indefinitely as the 
interval height increases. For an infinite interval, the discrete spectrum is finite, 
with the number of eigenvalues increasing as either the Reynolds number or 
wavenumber increases. In  addition, there is a continuous spectrum located along 
the c, = 1 axis for ci < - a/R. Mathematical proofs and a physical interpretation 
of the continuous spectrum remain to be given. In  particular, the physical 
realization of the lightly-damped portion of the continuous spectrum could have 
important consequences for the behaviour of disturbances in a boundary layer. 
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